Generation of highly site-specific DNA double-strand breaks in human cells by the homing endonucleases I-PpoI and I-CreI.

نویسندگان

  • R J Monnat
  • A F Hackmann
  • M A Cantrell
چکیده

We have determined the ability of two well-characterized eukaryotic homing endonucleases, I-PpoI from the myxomycete Physarum polycephalum and I-CreI from the green alga Chlamydomonas reinhardtii, to generate site-specific DNA double-strand breaks in human cells. These 18-kDa proteins cleave highly conserved 15- or 24-bp rDNA homing sites in their respective hosts to generate homogeneous 4-base, 3' ends that initiate target intron transposition or "homing." We show that both endonucleases can be expressed in human cells and can generate site-specific DNA double-strand breaks in 28S rDNA and homing site plasmids. These endonuclease-induced breaks can be repaired in vivo, although break repair is mutagenic with the frequent generation of short deletions or insertions. I-PpoI and I-CreI should be useful for analyzing DNA double-strand break repair in human cells and rDNA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flexible DNA target site recognition by divergent homing endonuclease isoschizomers I-CreI and I-MsoI.

Homing endonucleases are highly specific catalysts of DNA strand breaks that induce the transposition of mobile intervening sequences containing the endonuclease open reading frame. These enzymes recognize long DNA targets while tolerating individual sequence polymorphisms within those sites. Sequences of the homing endonucleases themselves diversify to a great extent after founding intron inva...

متن کامل

Generation of a nicking enzyme that stimulates site-specific gene conversion from the I-AniI LAGLIDADG homing endonuclease.

Homing endonucleases stimulate gene conversion by generating site-specific DNA double-strand breaks that are repaired by homologous recombination. These enzymes are potentially valuable tools for targeted gene correction and genome engineering. We have engineered a variant of the I-AniI homing endonuclease that nicks its cognate target site. This variant contains a mutation of a basic residue e...

متن کامل

A highly sensitive selection method for directed evolution of homing endonucleases

Homing endonucleases are enzymes that catalyze DNA sequence specific double-strand breaks and can significantly stimulate homologous recombination at these breaks. These enzymes have great potential for applications such as gene correction in gene therapy or gene alteration in systems biology and metabolic engineering. However, homing endonucleases have a limited natural repertoire of target se...

متن کامل

Targeted DNA excision in Arabidopsis by a re-engineered homing endonuclease

BACKGROUND A systematic method for plant genome manipulation is a major aim of plant biotechnology. One approach to achieving this involves producing a double-strand DNA break at a genomic target site followed by the introduction or removal of DNA sequences by cellular DNA repair. Hence, a site-specific endonuclease capable of targeting double-strand breaks to unique locations in the plant geno...

متن کامل

Germline excision of transgenes in Aedes aegypti by homing endonucleases

Aedes (Ae.) aegypti is the primary vector for dengue viruses (serotypes1-4) and chikungunya virus. Homing endonucleases (HEs) are ancient selfish elements that catalyze double-stranded DNA breaks (DSB) in a highly specific manner. In this report, we show that the HEs Y2-I-AniI, I-CreI and I-SceI are all capable of catalyzing the excision of genomic segments from the Ae. aegypti genome in a heri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemical and biophysical research communications

دوره 255 1  شماره 

صفحات  -

تاریخ انتشار 1999